Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 195: 115427, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659386

RESUMO

Micropollutants (MPs) are transported via rivers from industrial and urban areas to the German Bight (G.B.). In contrast to the mounting rivers less information is available on the occurrence of MPs and their transformation products (TPs) in the marine environment of the G.B. In this study 83 compounds, including 26 metabolites of pharmaceuticals and environmental TPs were measured in water at 46 sampling sites in estuaries of Ems, Weser, Elbe, and the G.B. 36 MPs were even detected in the open sea areas (salinity > 34 psu) at 0.07-5.1 ng/L and to the best of our knowledge 10 MPs were detected in the marine environment for the first time. Concentrations of 8 MPs exceeded PNEC values suggesting a potential risk for sea life. Spatial distribution and relation of MPs with salinity allowed identifying emission paths for certain compounds and revealed the emissions from the River Elbe and Rhine.

2.
Water Res ; 229: 119304, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459896

RESUMO

Non-target screening of suspended particulate matter (SPM), collected from the German rivers Rhine and Saar, was conducted with the goal of identifying organic, permanent cationic contaminants and of estimating their temporal trends over an extended period. Therefore, annual composite samples of SPM, provided by the German Environmental Specimen Bank, were extracted and analyzed with high resolution LC-QToF-MS/MS. To facilitate the identification of substances belonging to the class "permanent cations", prioritization methods were applied utilizing the physicochemical properties of these compounds. These methods include both interactions of the analyte molecules with cation exchange resins and analyzing mass deviations when changing from non-deuterated to deuterated mobile phase solvents during LC-MS analysis. By applying both methods in a combined approach, 123 of the initially detected 2695 features were prioritized, corresponding to a 95% data reduction. This led to the identification of 22 permanent cationic species. The organic dyes Basic Yellow 28 and Fluorescent Brightener 363 as well as two quaternary ammonium compounds (QACs) were detected in environmental samples for the first time to best of or knowledge. The other compounds include additional QACs, as well as quaternary tri-phenylphosphonium compounds (QPC/TPP). In addition to identification, we determined temporal trends of all compounds over a period of 13 years and assessed their ecotoxicological relevance based on estimated concentrations. The two QACs oleyltrimethylammonium and eicosyltrimethylammonium show significant increasing trends in the Rhine SPM and maximum concentrations in the Saar SPM of about 900 and 1400 µg/kg, respectively. In the case of the dyes, constant trends have been observed at the end of the studied period, but also maximum concentrations of 400 µg/kg for Basic Yellow 28 in 2006 and 1000 µg/kg for Fluorescent Brightener 363 in 2015, potentially indicating a strong ecotoxicological risk.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Material Particulado/análise , Poluentes Químicos da Água/química , Rios/química , Monitoramento Ambiental
3.
Water Res ; 213: 118168, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183017

RESUMO

A comprehensive real-time evaluation of the chemical status of surface water bodies is still utopian, but in our opinion, it is time to use the momentum delivered by recent advanced technical, infrastructural, and societal developments to get significantly closer. Procedures like inline and online analysis (in situ or in a bypass) with close to real-time analysis and data provision are already available in several industrial sectors. In contrast, atline and offline analysis involving manual sampling and time-decoupled analysis in the laboratory is still common practice in aqueous environmental monitoring. Automated tools for data analysis, verification, and evaluation are changing significantly, becoming more powerful with increasing degrees of automation and the introduction of self-learning systems. In addition, the amount of available data will most likely in near future be increased by societal awareness for water quality and by citizen science. In this analysis, we highlight the significant potential of surface water monitoring techniques, showcase "lighthouse" projects from different sectors, and pin-point gaps we must overcome to strike a path to the future of chemical monitoring of inland surface waters.

4.
Environ Sci Technol ; 54(17): 10588-10598, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867484

RESUMO

Due to the increasing use and high excretion rates, high quantities of the antidiabetic drug sitagliptin (STG) enter wastewater treatment plants (WWTPs). In conventional biological treatment, only a moderate removal was achieved, and thus, STG can be detected in WWTP effluents with concentrations in the higher ng/L range. Ozonation is a widely discussed technique for advanced wastewater treatment. In lab-scale experiments, STG showed pH-dependent removal kinetics with a maximum apparent rate constant of k ∼1 × 104 M-1 s-1 at pH ≥ 9. With an apparent rate constant of kO3 = (1.8 ± 0.7) × 103 M-1 s-1 at pH 8, STG can be considered to be readily degraded by ozonation of WWTP effluents. Ozone attacks the primary amine moiety of STG, leading to nitro-STG (TP 437) (the primary amine moiety is transformed into a nitro group). Furthermore, a diketone (TP 406) was formed, which can be further degraded by ozone. Lab-scale and pilot-scale experiments on ozonation of WWTP effluents confirmed that the ozone attack of STG was incomplete even at high ozone doses of 1.7 and 0.9 mg O3/mg DOC, respectively. These experiments confirmed that nitro-STG was formed as the main TP in the wastewater matrix. Two other TPs, TP 421c and TP 206b, were also detected, albeit with low intensities.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Cinética , Estresse Oxidativo , Fosfato de Sitagliptina , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
Water Res ; 178: 115703, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407929

RESUMO

Non-target screening of water samples from the Nidda river basin in central Germany was conducted with the goal to identify previously unknown chemical contaminants and their emission sources. The focus was on organic, water-borne contaminants which were not typical to municipal wastewater. Grab samples of river water from 13 locations on the Nidda and 15 of its tributaries, in sum 112 samples, were analysed with high resolution LC-QToF-MS/MS. To facilitate the identification of substances, features originating from the same compound such as adducts and isotopologues as well as in-source fragments and species with multiple charge states were registered and grouped by a componentization step utilizing both retention times and peak shapes of the features to combine them in a single component. This led to a reduction of the number of features by an average of 1235 per sample (46%). These grouped features were prioritized if these were detected only in specific tributaries or specific river sections, reducing the number of components by an average of 913 per sample (78%). In addition, grouped features were labelled as typically found in municipal wastewater by combining data from 16 wastewater treatment plants located across Germany and Switzerland and comparing this to components detected in the Nidda basin. These were removed, leading to a further reduction of components by an average of 72 per sample (30%) for an average total reduction of 2536 per sample (93%). Finally, nine compounds, with emission sources in three specific tributaries, were identified, including the textile additive Nylostab S-EED®, which was previously not known to be an environmental contaminant, as well as naturally occurring compounds such as highly toxic microcystins.


Assuntos
Rios , Poluentes Químicos da Água , Monitoramento Ambiental , Alemanha , Suíça , Espectrometria de Massas em Tandem , Fluxo de Trabalho
6.
Rapid Commun Mass Spectrom ; 34(1): e8541, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31364212

RESUMO

RATIONALE: The adoption of database screening using high-resolution liquid chromatography/mass spectrometry data is promising as a river water monitoring and surveillance tool but depends on the ability to perform reliable data processing on a large number of samples in a unified workflow. Strategies to minimize errors have been proposed but automated procedures are rare. METHODS: High-resolution LC/ESI-QTOFMS/MS in data-dependent MS2 acquisition mode was performed for the analysis of surface water samples by direct injection. Data processing was achieved with software tools written in R. A database containing MS2 spectra of 693 compounds formed the basis of the workflow. Standard mixes and a time series of 361 samples of river water were analyzed and processed with the optimized workflow. RESULTS: Using the database and a mix of 70 standards for testing, it was found that an identification strategy including (i) mass, (ii) retention time, and (iii) MS2 spectral matching achieved a two- to three-fold improvement in the fraction of false positives compared with using only two criteria, while the number of false negatives remained low. The optimized workflow was applied to the sample series of river water. In total, 135 compounds were identified by a library match. CONCLUSIONS: The developed automated database screening approach minimizes the proportion of false positives, while still allowing for the screening of hundreds of water samples for hundreds of compounds in a single run.

7.
Water Res ; 167: 115034, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31581038

RESUMO

Laboratory-scale experiments were conducted to investigate the (bio)transformation of the antidiabetic sitagliptin (STG) and the antihistamine fexofenadine (FXF) during wastewater treatment. As inoculum either attached-growth on carriers or suspended sludge from a hybrid moving bed biofilm reactor (HMBBR) was used. Both target compounds were incubated in degradation experiments and quantified via LC-MS/MS for degradation kinetics. Furthermore transformation products (TPs) were analyzed via high resolution mass spectrometry (HRMS). Structural elucidation of the TPs was based on the high resolution molecular ion mass to propose a molecular formula and on MS2 fragmentation to elucidate the chemical structure of the TPs. In total, 22 TPs (9 TPs for STG and 13 TPs for FXF) were detected in the experiments with STG and FXF. For all TPs, chemical structures could be proposed. STG was mainly transformed via amide hydrolysis and conjugation of the primary amine moiety. In contrast, FXF was predominantly transformed by oxidative reactions such as oxidation (dehydrogenation) and hydroxylation. Furthermore, FXF was removed significantly faster in contact with carriers compared to suspended sludge, whereas STG was degraded slightly faster in contact with suspended sludge. Moreover, the primary TP of FXF was also degraded faster in contact with carriers leading to higher proportions of secondary TPs. Thus, the microbial community of both carriers and suspended sludge catalyzed the same primary transformation reactions but the transformation kinetics of FXF and the formation/degradation of FXF TPs were considerably higher in contact with carrier-attached biomass. The primary degradation of both target compounds in pilot- and full-scale conventional activated sludge (CAS) and MBBR reactors reached 42 and 61% for FXF and STG, respectively. Up to three of the identified TPs of FXF and 8 TPs of STG were detected in the effluents of pilot- and full-scale CAS and MBBR.


Assuntos
Biofilmes , Esgotos , Biomassa , Reatores Biológicos , Cromatografia Líquida , Fosfato de Sitagliptina , Espectrometria de Massas em Tandem , Terfenadina/análogos & derivados
8.
Water Res ; 152: 274-284, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682571

RESUMO

The biological degradation of many trace organic compounds has been reported to be strongly redox dependent. The traditional characterization of redox conditions using the succession of inorganic electron acceptors such as dissolved oxygen and nitrate falls short in accurately describing the critical transition state between oxic and suboxic conditions. Novel monitoring strategies using intrinsic redox tracers might be suitable to close that gap. This study investigated the potential use of the successive biological transformation of the iodinated contrast medium iopromide as an intrinsic tracer of prevailing redox conditions in biofiltration systems. Iopromide degradation in biofiltration systems was monitored by quantifying twelve known biological transformation products formed under oxic conditions. A novel dimensionless parameter (TIOP) was introduced as a measure for the successive transformation of iopromide. A strong correlation between the consumption of dissolved oxygen and iopromide transformation emphasized the importance of general microbial activity on iopromide degradation. However, results disproved a direct correlation between oxic (>1 mg/L O2) and suboxic (<1 mg/L O2) conditions and the degree of iopromide transformation. Results indicated that besides redox conditions also the availability of biodegradable organic substrate affects the degree of iopromide transformation. Similar behavior was found for the compounds gabapentin and benzotriazole, while the oxic degradation of metoprolol remained stable under varying substrate conditions.


Assuntos
Poluentes Químicos da Água , Iohexol/análogos & derivados , Compostos Orgânicos , Oxirredução
9.
Sci Total Environ ; 624: 1443-1454, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929255

RESUMO

To reduce the discharge of micropollutants, advanced wastewater treatment methods were investigated in the last years. Estrogenic effects were found to be reduced by ozonation. These activities are usually measured using genetically modified cell-based tests. As these bioassays are representing a sum parameter, also inhibitory effects such as antagonistic effects need to be further investigated as they are potentially reducing the detected activities. Therefore, a direct comparison of chemical target analysis and biological equivalent concentrations measured by bioassays is often difficult. To investigate the fate of antagonistic activities and their role in mixtures with agonistic activities, two hospital wastewater treatment plants were studied after different treatment steps. Thereby highly enriched samples were analyzed by a combination of bioassays with chemical target and non-target analyses. In order to achieve an in-depth characterization of the antagonistic activities a fractionation of the enriched samples was performed. To identify relevant compounds an effect directed identification approach was used by combining high-resolution mass spectrometry and bioassays. The results showed a high reduction for estrogene and androgene activities. However, a constant antagonistic activity after membrane bioreactor and ozone treatment was observed. A reduction of the antagonistic activity was observed after passing an activated carbon filter. The fractionation approach showed a specific finger-print of each sample of the different treatment steps. Hereby we could show that the composition of agonistic and antagonistic active compounds is changing after each treatment step while the overall measured activity stays the same. Using fractionation and the combination of bioassays the number of relevant features detected by chemical non-target screening could be reduced by >85%. As a result the phosphorous flame retardant TCEP could be identified as anti-estrogene active. Future research should be done to identify more antagonistic active compounds and potentially active transformation products after ozone treatment.


Assuntos
Disruptores Endócrinos/química , Ozônio/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Reatores Biológicos , Carvão Vegetal/química , Disruptores Endócrinos/análise , Hospitais , Poluentes Químicos da Água/análise
10.
Water Res ; 141: 405-416, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859473

RESUMO

A tiered process was developed to assess the transformation, CO2 formation and uptake of four organic micropollutants by carrier-attached microorganisms from two municipal wastewater treatment plants. At the first tier, primary transformation of ibuprofen, naproxen, diclofenac, and mecoprop by carrier-attached microorganisms was shown by the dissipation of the target compounds and the formation of five transformation products using LC-tandem MS. At the second tier, the microbial cleavage of the four organic micropollutants was confirmed with 14C-labeled micropollutants through liquid scintillation counting of the 14CO2 formed. At the third tier, microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH) was used to screen carrier-attached microorganisms for uptake of the four radiolabeled micropollutants. Results from the MAR-FISH screening indicated that only a small fraction of the microbial community (≤1‰) was involved in the uptake of the radiolabeled micropollutants and that the responsible microorganisms differed between the compounds. At the fourth tier, the microbial community structure of the carrier-attached biofilms was analyzed by 16S rRNA gene amplicon sequencing. The sequencing results showed that the MAR-FISH screening targeted ∼80% of the microbial community and that several taxonomic families within the FISH-probed populations with MAR-positive signals (i.e. Firmicutes, Gammaproteobacteria, and Deltaproteobacteria) were present in both biofilms. From the broader perspective of organic micropollutant removal in biological wastewater treatment, the MAR-FISH results of this study indicate a high degree of microbial substrate specialization that could explain differences in transformation rates and patterns between micropollutants and microbial communities.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Dióxido de Carbono/metabolismo , Diclofenaco/metabolismo , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Poluentes Químicos da Água/metabolismo , Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Biofilmes , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Deltaproteobacteria/fisiologia , Firmicutes/genética , Firmicutes/metabolismo , Firmicutes/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Gammaproteobacteria/fisiologia , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Microbiologia da Água
11.
J Chromatogr A ; 1531: 64-73, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29183669

RESUMO

A direct injection, multi residue analytical method separated in two chromatographic runs was developed utilizing scheduled analysis to simultaneously quantify 154 compounds, 84 precursors and 70 transformation products (TPs)/metabolites. Improvements in the chromatographic data quality, sensitivity and reproducibility were achieved by scheduling the analysis of each analyte into pre-determined retention time windows. This study shows the influence of the scan time on the dwell time and the number of data points per peak as well as the effect on the precision of analysis. Lowering the scan time decreased dwell time to a minimal value, however, this had no negative effects on the precision. Increasing the number of data points per peak by decreasing the scan time led to more accurate peak shapes. A final set of parameters was chosen to obtain a minimum of 10 data points per peak to guarantee accurate peak shapes and thus reproducibility of analysis. A validation of the method was performed for different water matrices yielding very good linearity for all substances, with limits of quantification mainly in the lower to mid ng/L-range and recoveries mainly between 70 and 125% for surface water, bank filtrate as well as influents and effluents of wastewater treatment plants. The analysis of environmental samples and wastewater revealed the occurrence of selected precursors and TPs in all analyzed matrices: 95% of the compounds in the target list could be quantified in at least one sample. The relevance of TPs and metabolites such as valsartan acid and clopidogrel acid was also confirmed by their detection in all aqueous matrices. Wastewater indicators such as acesulfame and diclofenac were detected at elevated concentrations as well as substances such as oxipurinol which so far were not in the focus of monitoring programs. The developed method can be used for rapid analysis of various water matrices without any sample enrichment and can aid the assessment of water quality and water treatment processes.


Assuntos
Poluentes Químicos da Água/análise , Água/química , Cromatografia Líquida de Alta Pressão , Diclofenaco/análise , Diclofenaco/metabolismo , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Tiazinas/análise , Tiazinas/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação
12.
Sci Total Environ ; 583: 10-18, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095993

RESUMO

In this study, known products from oxic transformation of the X-ray contrast medium iopromide were introduced for the first time as intrinsic tracer for in situ characterization of the transition zone between oxic and suboxic conditions during the initial phase of soil-aquifer treatment (SAT). Two wet-dry cycles of a full-scale infiltration basin were monitored to characterize hydraulic retention times, redox conditions, removal of bulk organic parameters and the fate of chemicals of emerging concern (CECs). Tracer tests at the site showed an average hydraulic retention time of <20h before collection in drainage pipes located approximately 1.5m below surface. Dissolved oxygen at different depth rapidly depleted and only increased towards the end of the flooding event. Transformation of iopromide and all known intermediates to persistent transformation products (TPs) usually occurring during oxic biodegradation was very limited in samples from suction cups immediately underneath the basin. But transformation was complete in samples collected from the drainage outlet indicating that dissolved oxygen had been introduced to the system before sample collection in the combined drainage outlet. Similar to iopromide and its TPs, removal of several CECs (diclofenac, bezafibrate, mecoprop, TCEP) was inefficient after 90cm infiltration (<35%) but significantly enhanced in the combined drainage outlet (>80%). These results highlight that the analysis of iopromide along with its intermediates and persistent TPs can serve as a promising probing tool to determine overall efficiency of CEC biodegradation and to identify potential in situ oxygen limitations.

13.
Water Res ; 105: 559-567, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27690310

RESUMO

The biotransformation of diclofenac during wastewater treatment was investigated. Attached growth biomass from a carrier-filled compartment of a hybrid-MBBR at the wastewater treatment plant (WWTP) in Bad Ragaz, Switzerland was used to test the biotransformation. Laboratory-scale incubation experiments were performed with diclofenac and carriers and high-resolution LC-QTof-MS was implemented to monitor the biotransformation. Up to 20 diclofenac transformation products (TPs) were detected. Tentative structures were proposed for 16 of the TPs after characterization by MS2 fragmentation and/or inferring the structure from the transformation pathway and the molecular formula given by the high resolution ionic mass. The remaining four TPs were unambiguously identified via analytical reference standards. The postulated reactions forming the TPs were: hydroxylation, decarboxylation, oxidation, amide formation, ring-opening and reductive dechlorination. Incubation experiments of individual TPs, those which were available as reference standards, provided a deeper look into the transformation pathways. It was found that the transformation consists of four main pathways but no pathway accounted for a clear majority of the transformation. A 10-day monitoring campaign of the full-scale plant confirmed an 88% removal of diclofenac (from approximately 1.6 µg/L in WWTP influent) and the formation of TPs as found in the laboratory was observed. One of the TPs, N-(2,6-dichlorophenyl)-2-indolinone detected at concentrations of around 0.25 µg/L in WWTP effluent, accounting for 16% of the influent diclofenac concentration. The biotransformation of carriers was compared to a second WWTP not utilising carriers. It was found that in contact with activated sludge, similar hydroxylation and decarboxylation reactions occurred but at much slower rates, whereas some reactions, e.g. reductive dechlorination, were not detected at all. Finally, incubation experiments were performed with attached growth biomass from a third WWTP with a similar process configuration to Bad Ragaz WWTP. A similarly effective removal of diclofenac was found with a similar presence of TPs.


Assuntos
Diclofenaco , Esgotos , Biofilmes , Águas Residuárias , Poluentes Químicos da Água
14.
Water Res ; 102: 582-593, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448509

RESUMO

Pyridine, pyridazine, pyrimidine and pyrazine were investigated in their reaction with ozone. These compounds are archetypes for heterocyclic aromatic amines, a structural unit that is often present in pharmaceuticals, pesticides and dyestuffs (e.g., enoxacin, pyrazineamide or pyrimethamine). The investigated target compounds react with ozone with rate constants ranging from 0.37 to 57 M(-1) s(-1), hampering their degradation during ozonation. In OH radical scavenged systems the reaction of ozone with pyridine and pyridazine is characterized by high transformation (per ozone consumed) of 55 and 54%, respectively. In non scavenged system the transformation drops to 52 and 12%, respectively. However, in the reaction of pyrimidine and pyrazine with ozone this is reversed. Here, in an OH radical scavenged system the compound transformation is much lower (2.1 and 14%, respectively) than in non scavenged one (22 and 25%, respectively). This is confirmed by corresponding high N-oxide formation in the ozonation of pyridine and pyridazine, but probably low formation in the reaction of pyrimidine and pyrazine with ozone. With respect to reaction mechanisms, it is suggested that ozone adduct formation at nitrogen is the primary step in the ozonation of pyridine and pyridazine. On the contrary, ozone adduct formation to the aromatic ring seems to occur especially in the ozonation of pyrimidine as inferred from hydrogen peroxide yield. However, also OH radical reactions are supposed processes in the case of pyrimidine and in particular for pyrazine, albeit negligible OH radical yields are obtained. The low compound transformation in OH radical scavenged system can prove this. As a result of negligible OH radical yields in all cases (less than 6%) electron transfer as primary reaction pathway plays a subordinate role.


Assuntos
Ozônio/química , Piridinas , Peróxido de Hidrogênio/química , Cinética , Poluentes Químicos da Água/química
15.
Water Res ; 88: 960-971, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26624229

RESUMO

Piperidine, piperazine and morpholine as archetypes for secondary heterocyclic amines, a structural unit that is often present in pharmaceuticals (e.g., ritalin, cetirizine, timolol, ciprofloxacin) were investigated in their reaction with ozone. In principle the investigated compounds can be degraded with ozone in a reasonable time, based on their high reaction rate constants with respect to ozone (1.9 × 10(4)-2.4 × 10(5) M(-1) s(-1)). However, transformation is insufficient (13-16%), most likely due to a chain reaction, which decomposes ozone. This conclusion is based on OH scavenging experiments, leading to increased compound transformation (18-27%). The investigated target compounds are similar in their kinetic and stoichiometric characteristics. However, the mechanistic considerations based on product formation indicate various reaction pathways. Piperidine reacts with ozone via a nonradical addition reaction to N-hydroxypiperidine (yield: 92% with and 94% without scavenging, with respect to compound transformation). However, piperazine degradation with ozone does not lead to N-hydroxypiperazine. In the morpholine/ozone reaction, N-hydroxymorpholine was identified. Additional oxidation pathways in all cases involved the formation of OH with high yields. One important pathway of piperazine and morpholine by ozonation could be the formation of C-centered radicals after ozone or OH radical attack. Subsequently, O2 addition forms unstable peroxyl radicals, which in one pathway loose superoxide radicals by generating a carbon-centered cation. Subsequent hydrolysis of the carbon-centered cation leads to formaldehyde, whereby ozonation of the N-hydroxy products can proceed in the same way and in addition give rise to hydroxylamine. A second pathway of the short-lived peroxyl radicals could be a dimerization to form short-lived tetraoxides, which cleave by forming hydrogen peroxide. All three products have been found.


Assuntos
Morfolinas/química , Ozônio/química , Preparações Farmacêuticas/química , Piperazinas/química , Piperidinas/química , Poluentes Químicos da Água/química , Cinética , Piperazina , Eliminação de Resíduos Líquidos
16.
Water Res ; 88: 550-557, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26546758

RESUMO

The antibiotic trimethoprim (TMP), a micropollutant found at µg/L levels in raw wastewater, was investigated with regard to its (bio)transformation during biological wastewater treatment. A pilot-scale, nitrifying/denitrifying Sequencing Batch Reactor (SBR) fed with municipal wastewater was monitored for TMP removal during a 16-month monitoring study. Laboratory-scaled bioreactors spiked with TMP were applied to identify the transformation products (TPs). In total, six TPs could be identified from TMP. However, the TP formation was influenced by the spike concentration. At an initial concentration of 500 µg/L TMP, only two TPs were found, whereas at 5 µg/L a completely different transformation pathway led to four further TPs. At low concentrations, TMP was demethylated forming 4-desmethyl-TMP, which was then quickly hydroxylated, oxidized and cleaved forming 2,4-diaminopyrimidine-5-carboxylic acid (DAPC) via two intermediate TPs. DAPC was detected in the SBR effluent in a 3-d composite sample with 61 ng/L, which accounts for 52% of the attenuated TMP. The primary degradation at low spiking levels was best modelled by a pseudo-first order kinetic. Considering the SBR, the model predicted a TMP removal of 88-94% for the reactor, consistent with a monitoring campaign exhibiting an average removal of >83%. Both the TP formation profiles and kinetic modelling indicated that only the results from the bioreactor tests at low spike concentrations were representative of the transformation in the SBR.


Assuntos
Trimetoprima/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/metabolismo , Aerobiose , Anti-Infecciosos Urinários/metabolismo , Antimaláricos/metabolismo , Reatores Biológicos , Cinética , Estações do Ano
17.
Water Res ; 48: 478-89, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24238259

RESUMO

The transformation of selected phenolic substances was investigated during biological wastewater treatment. A main emphasis was put on the relevance of abiotic processes leading to toxic nitrophenolic transformation products (TPs). Due to their environmental relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is present. HNO2, N2O3 and NO and NO2 radicals are likely involved in the abiotic process. It was found that the process was promoted by the freezing of water samples, since this can lead to an unexpected pH drop. However, under conditions present at wastewater treatment plants (neutral pH, low nitrite concentrations), the formation of appreciable concentrations is rather unlikely through this process, since HNO2 concentrations are extremely low and NO and NO2 radicals will also react with other wastewater constituents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly caused by biotic transformation. In addition to hydroxylation as a common reaction under aerobic conditions, the formation of sulfate conjugates was detected with the original compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic substances are formed it is likely that they are further transformed to sulfate conjugates. In raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected. Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified in the WWTP effluents. The concentrations of dextrorphan increased slightly during WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human metabolite form, or demethylation of the prodrug dextromethorphan.


Assuntos
Biotransformação , Nitratos/metabolismo , Fenóis/metabolismo , Esgotos , Poluentes Químicos da Água/metabolismo , Cinética , Águas Residuárias
19.
Nucleic Acids Res ; 35(Database issue): D521-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17202168

RESUMO

The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at: www.hmdb.ca.


Assuntos
Bases de Dados Factuais , Metabolismo , Bases de Dados Factuais/normas , Humanos , Internet , Espectrometria de Massas , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas , Ressonância Magnética Nuclear Biomolecular , Controle de Qualidade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...